
380 SPACE-GROUP ANALYSES 

Materials Science Division of the US Department of 
Energy under contract No. DE-AC03-76SF00098. 

References 

BANDO, Y. (1983). Acta Cryst. B39, 185-189. 
BARRETI', C. S. & GEISLER, A. H. (1940). J. Appl. Phys. 11, 

733-739. 
BOYER, H. E. & GALL, T. L. (1985). Editors. Metals Handbook - 

Desk Edition, p. 1.48. American Society for Metals, Metals Park, 
Ohio. 

BUXTON, B. F., EADES, J. A., STEEDS, J. W. & RACKHAM, G. 
M. (1976). Philos. Trans. R. Soc. London Set. A, 281, 171-194. 

GJONNES, J. & MOODIE, A. F. (1965). Acta Cryst. 19, 65-67. 
GOODMAN, P. (1975). Acta Cryst. AD1, 804-810. 
GOODMAN, P. & WHITFIELD, H. J. (1980). Acta Cryst. A36, 

219-228. 
HENRY, N. F. M. & LONSDALE, K. (1969). Editors. International 

Tables for X.ray Crystallography, Vol. I, pp. 487-489. Birming- 
ham: Kynoch Press. 

OF THIN PRECIPITATES 

HOWE, J. M., AARONSON, H. 1. & GRONSKY, R. (1985). Acta 
Metall. 33(4), 649-658. 

HOWE, J. M., DAHMEN, U. & GRONSKY, R. (1986). Philos. Mag. 
Submitted. 

HOWE, J. M. & GRONSKY, R. (1985). Ultramicroscopy, 18, 83-90. 
HREN, J. A. & THOMAS, G. (1963). Trans. Metall. Soc. AIME, 

227, 308-318. 
KOHLER, V. L., SHELTON, C. G. & RALPH, B. (1983). Proc. 41st 

Annual Conf. Electron Microsc. Soc. America, pp. 258-259. San 
Francisco Press. 

MONDOLFO, L. F. (1979). Aluminum Alloys - Structure and Proper- 
ties, pp. 213-224. London: Butterworth. 

SARIKAYA, M. & THOMAS, G. (1984). Analytical Electron Micros- 
copy, pp. 97-104. San Francisco Press. 

SERNEELS, R., SNYKERS, M., DELAVIGNETTE, P., GEVERS, R. 
& AMELINCKX, S. (1973). Phys. Status Solidi B, 58, 277-292. 

STEEDS, J. W. & VINCENT, R. (1983). J. Appl. Cryst. 16, 317-324. 
TANAKA, M., SAITO, R. & SEKII, H. (1983). Acta Cryst. A39, 

357-368. 
TANAKA, M., SEKII, H. & NAGASAWA, T. (1983). Acta Cryst. 

A39, 825-837. 

Acta Cryst. (1986). A42, 380-386 

I M P A S -  A Simple Structure Determination Procedure Based on Intermolecular 
Patterson Vectors 

BY PETER LUGER AND JOACHIM FUCHS 

Fachbereich Chemie der Freien Universitiit Berlin, Takustrasse 6, D- 1000 Berlin 33, Federal Republic of Germany 

(Received 15 February 1985; accepted 22 April 1986) 

Abstract 

A computer method for interpreting Patterson func- 
tions of crystals belonging to space groups of higher 
symmetry than P1 is described. A table of all 
Patterson peaks in the entire cell is initially searched 
for vectors between symmetry-related atoms. Such 
'generalized Harker vectors' are identified not only 
by known symmetry-fixed components, but also by 
statistical criteria based on a systematic search for 
pairs of vectors which relate additional atoms to the 
pair involved in the generalized Harger vector. Sub- 
sequent searches, using the same basic principle, are 
carried out to find additional atoms. Pairs of vectors, 
whose components add up to the previously estab- 
lished Harker vector, indicate newly found atom posi- 
tions after appropriate transformations into crystal 
space. The correctness of these atom positions can 
be further tested by applying all symmetry operations 
of the space group in question and looking for a 
complete set of related vectors. In contrast to many 
other Patterson search methods no information about 
known molecular fragments is requested. Also 
described are four structures which were solved with 
the IMPAS procedure following unsuccessful 
attempts to solve them by direct methods. 

0108 -7673/86/050380-07501.50 

Introduction 

50 years ago, Patterson (1934) introduced the Fourier 
transform of the squared structure amplitudes as one 
of the most important crystallographic functions into 
the literature. For more than 30 years the decon- 
volution of the Patterson function was the major 
procedure for solving the crystallographic phase 
problem. Several techniques were developed 
[superposition method (Jacobson, 1966), image- 
seeking functions (Buerger, 1959), Faltmolekiil- 
methode (Huber & Hoppe, 1965), etc.] mainly aimed 
at searching for suitable intramolecular Patterson 
vectors. 

In the last decade 'direct methods' have superseded 
Patterson methods as the major tool in solving crystal 
structures. Among the organic and organometallic 
structures published in 1982 the phase problem was 
solved with direct methods in 72% of the cases, and 
with Patterson methods in 28% (de Ranter, 1984). 
Nevertheless, a number of structural problems 
remain, where direct methods fail or are successful 
only after overcoming considerable difficulties. These 
problems occur in a few unsuitable space groups 
such as P1 or C2, in cases with high internal mol- 
ecular symmetry (mainly observed in inorganic 
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compounds),  in cases of superstructure lattices and 
also if moderate-intensity data sets were measured. 

For these cases we are now observing a 'renais- 
sance' of Patterson methods. A number of authors 
have developed new efficient Patterson search pro- 
grams, e.g. the new vector search programs of 
Nordman (1980) and Strumpel (1983), a modified 
superposition method, Dietrich (1983), or the 
integrated Patterson and direct methods of Egert & 
Sheldrick (1985). Generally, these methods need a 
known input fragment to allow for a search for 
intramolecular vectors, at least in the initial stages. 
Methods which do not use molecular-fragment struc- 
tures have been described by Jacobson & Beckman 
(1979) and by Simonov (1982). 

As a further development of the latter type of 
application we have established a procedure which 
is based on a systematic search for intermolecular 
Patterson vectors related by one of the space-group 
symmetry elements. 

Description of the method 

For convenience we use two spaces. One is the crystal 
space C; vectors r e  C, r = (x, y, z) generally represent 
position vectors of atoms relative to one origin of the 
unit cell. The second is the Patterson space P;  vectors 
u ~ P, u = (u, v, w) represent Patterson vectors, having 
the property u = r l - r 2 ,  where rl ,  r2 e C. Generalizing 
the usual Harker vector notation, we regard each 
vector k ~ P as a Harker vector if k is the difference 
vector of two symmetry-related atoms (in that sense 
k = 2r, where r is a position vector in a centric struc- 
ture, is taken as a Harker vector). 

If the Patterson function is regarded as an n-fold 
image of an n-atom structure, it can be said that a 
structure is solved (a) if one connected image can be 
identified and (b) if the corresponding viewing atom 
is brought to its correct position relative to a valid 
unit-cell origin. 

For problem (b) Harker vectors play an important 
role. If one Harker vector is known, the unit-cell 
origin can be fixed, at least in one or two dimensions. 
Generally, in cases where many atoms of equal weight 
are present, a Harker vector is difficult to recognize; 
A procedure which searches for appropriate Patterson 
vectors and supplies two-dimensional or one- 
dimensional statistics (for Harker planes and lines) 
has been written for identifying Harker vectors. Once 
this problem has been overcome, further searches are 
provided to solve problem (a). 

To handle searches of the type described above an 
interactive computer program IMPAS (= in te r -  
molecular Patterson search) has been developed, 
which is based on systematic searches for pairs of 
vectors satisfying a given symmetry condition. Sub- 
sequent searches for additional symmetry elements 
may be executed. 

In total, IMPAS offers three types of searches: 
(1) Routines allowing searches for Harker vectors 

on a statistical basis and thus helping implicitly in 
defining the origin of C. 

(2) If routines of type (1) have successfully been 
applied, o ~  if the user himself has identified one 
Harker vector (e.g. in the case of a heavy-atom struc- 
ture), searches are made for Patterson vector pairs 
u, u' e P which satisfy the symmetry condition associ- 
ated with the given Harker vector. If a pair u, u' has 
been found, it is transformed into the corresponding 
pair r, r' e C as far as is possible via the Harker vector. 

(3) If a supposed set of connected position vectors 
in C has been determined, searches in C may be 
executed to sort out ghosts. 

The application of IMPAS to the structure deter- 
mination of the heteropolytungstophosphate 
Kz3[KP2W2oO72]. x H 2 0  (Fuchs & Palm, 1984) may 
illustrate the three types of search described above. 
Although this compound crystallizes in the space 
group P21/c, which is usually favorable for the appli- 
cation of direct methods, no solution with M U L T A N  
(Main, Lessinger, Woolfson, Germain & Declercq, 
1977) could be obtained. Two [KP2W2oO72] units are 
in the cell, hence ten independent W atoms have to 
be located. 

With respect to the twofold screw axis, a search 
for Harker vectors using one of the type-(1) IMPAS 
routines can be applied as follows. The Patterson 
vectors of two symmetry-related atoms r and r' relative 
to a reference atom ro are 

u = r - r o  and u ' = r ' - r o .  

In components,  

u = ( u ,  v, w ) = ( X - X o ,  y - y o ,  z - zo )  

u' = (u',  v', w ' ) = ( - X - X o , ½ + y - y o , ½ - Z - Z o ) .  

It follows that 

/ f - -  I) = 1 

u ' +  u = -2Xo 

w'+  w = ½-2Zo, 

which are components of the Harker vector k associ- 
ated with ro. To obtain a solution for k the program 
searches for pairs of Patterson vectors which differ 
in v by 1. If  such a pair is found, the vector sum is 
registered in a two-dimensional u, w grid. After the 
search is completed, a u, w grid point having a large 
number of such sums registered is accepted as rep- 
resenting the u, w components of a Harker vector. 

A search of this type was executed with the 457 
highest Patterson vectors of the tungstophosphate 
structure. With a subdivision of the uw plane into 
50 x 50 grid points one accumulation of u, w vectors 
was registered at u = 4.5/50, w = 4.5/50 with a total 
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of  52 counts around this point  (Fig. 1) and regarded 
as one of  the tungsten Harker  vectors. 

With one Harker  vector k of the structure known, 
a type-(2) search can be executed, which utilizes the 
fact that f rom a knowledge of k the d isplacement  
between spaces C and P can be calculated in those 
dimensions  where k is operative. 

The si tuation is i l lustrated in Fig. 2 in projection 
on the xz plane. Let s be the vector representing the 
displacement  of  the symmetry element from the unit- 
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Fig. 1. Two-dimensional vector distribution of a type-(1) search 
with respect to the 21 axis for KIa[KP2W2oO72]. x n 2 0 .  The 
accumulation at the various circled grid points corresponds to 
the Harker vectors of tungsten atoms. The vector marked by a 
double circle was used in further IMPAS searches. 

cell origin [in the case of  the 21 axis in P2~/c, we 
have s =  (0, 0,~)]. Let us view the Patterson space 
from the atom ro for which the Harker vector k is 
known. If  roy and ky are the projections of  ro and k 
on to the xz plane,  we have 

ky = 2 ( s -  roy). (1) 

Let r, r' be the posit ion vectors of  a further atom 
pair  of  the structure, symmetry-related via the 2] axis, 
in C: 

r=(x,y ,z)  

r '=(-x ,  ½+Y, ½-z). 

The corresponding Patterson vectors relative to the 
Patterson origin at ro are u = r -  ro and u' = r' - ro which 
have the property that their  v components  differ by 
½ and that their  projections on the xz plane satisfy 

Uy+Uy = ky, ky=(Uk, O, Wk). 

Now IMPAS searches for pairs of  Patterson vectors 
which differ in v by ½ and whose vector sum has u, w 
components  equal to the Harker vector components  
Uk and Wk. When  such a pair  is found,  it is assumed 
to represent a pair  of  atoms relative to the Patterson 
origin atom to. From the knowledge of k [equat ion 
(1)] the d isplacement  vector ½ky between roy and the 
symmetry element  at s is known. 

This makes it possible to assign the crystal-space 
x, z coordinates to the Patterson origin atom ro, as 
well as the atom coordinates of  r and r', with an 
indeterminate  y coordinate:  

r~ = (x, y+A, z) 

r'a=(-x, ½+ y+ A, ½-z) 

where A is unknown,  i.e. the origin in the y direction 
is not yet fixed. Nevertheless,  from a knowledge of  
k this search has al lowed us to obtain a number  of  

Xpy~ 
xc\ 1 

1 "\ z/= 11~ in c 

0 cO c ~ ~ _ = . T . - s  . . . . . . . .  --/I/ 
z C 
> 

Zpy 

Fig. 2. Crystal and Patterson vectors with respect to a twofold 
screw axis in P21/c illustrated in a projection onto the xz plane. 
The subscripts c and p designate origin and axes of C and P, 
respectively. A subscript y designates the projection of a quantity 
generally not in the xz plane onto this plane. 
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atomic positions rai, r~i (i = 1, 2 , . . .  ) based on the 
proper origin of C, except for their y components. 

The displacement A can be determined with a 
one-dimensional type-(1) search, where only the ra- 
and r~,-type vectors are used as input. Since the space 
group P21/c also has the inversion center and the 
c-glide plane as symmetry elements, the search 
described above operates on vectors of the following 
types: 

A: r = ( x , y + A , z )  

B: r '=(--x,½+y+A,½-z)  

C: r"=(x, ½-y+ a,½+z) 

D: r" = ( -x ,  - y  + A, -z) .  

Among these vectors a search is made for pairs 
whose x and z sums equal zero (modulo 1). For these 
pairs the frequency of the sum of y coordinates is 
plotted versus y. The maximum of this one- 
dimensional distribution is probably 2A, coming from 
the pairs A~ D and B~ C: 

A /D:  r , ~ + r ~ = ( 0 , 2 A ,  0) 

B/C: r ~ + r ~  = (0, l +2A,  1). 

Subtraction of A relates the y coordinates to the 
proper crystal-space origin, so that after this search 
a set of position vectors r l ,  r 2 , . . .  ~ C is obtained, 
giving, in the case of a successful solution, all atom 
positions in the unit cell (not only in the asymmetric 
unit!). 

However, in an actual case, some atom positions 
may be missing or vectors representing false atom 
positions (ghosts) may be in the list. While the first 

Fig. 3. Refined crystal structure of K13[KP2W20072] . x H 2 0 .  In the 
asymmetric unit (one half of the displayed structure) the W 
atoms found by IMPAS are black. 

problem is not easy to overcome, an additional type- 
(3) search may solve the latter one. 

Ghosts may be eliminated, if in the set of crystal- 
space vectors a search is made for a further space- 
group symmetry operation, in that for each vector 
r e C a check is made whether its symmetry-related 
vector r' is in the set. For the tungstophosphate struc- 
ture this was done by a search with respect to the 
c-glide plane. A final result with seven of the ten W 
atoms of the asymmetric unit was obtained; this was 
sufficient to phase the complete structure (see Fig. 3). 

In addition to one- and two-dimensional searches 
for Harker vector statistics a 'zero'-dimensional 
search may be selected for the identification of Harker 
vectors in the space group P1. This search is based 
on the experience that among the highest Patterson 
vectors one Harker vector k = (2x, 2y, 2z) should be 
present. In order to identify a vector of this type, the 
Patterson vectors are taken from the peak list in order 
of decreasing height, and assumed to be Harker vec- 
tors k of an inversion center. Then a search for vector 
pairs u, u' with 

u + u ' = k  

is executed. The number of such vector pairs found, 
and their ' intensity sum', 

y~ I(u)Z(u'), 
all pairs 

where I(u) ,  I (u ' )  are the peak heights of the Patterson 
vectors u and u', may serve as a criterion, whether 
the input vector is a Harker vector or not. 

An example of the successful application of the 
zero-dimensional search option is the structure of 
2,2'-bipyridylium oxonium bis(diiodobromide) 
(Parlow & Hartl, 1985) space group Pi. The second- 
highest Patterson vector was recognized as the Harker 
vector (2x, 2y, 2z) of an I atom. With this vector as 
input to a further search the correct solution of the 
structure was obtained. 

The program structure 

IMPAS was written in Fortran IV and was developed 
as an interactive program on the CDC Cyber 835 
computer. Since only the maxima of the Patterson 
syntheses are stored, the memory requirement is less 
than 32K 60-bit words, for up to 1000 Patterson 
vectors. The program can easily be adapted to Fortran 
77 so that IMPAS can be run on computers of 
different type. An illustration of the program structure 
is given in the flowchart of Fig. 4.* 

* The source program listing, a program description (in English) 
and a user's manual (in German) have been deposited with the 
British Library Lending Division as Supplementary Publication 
No. 42888 (48pp.). Copies may be obtained through The Executive 
Secretary, International Union of Crystallography, 5 Abbey 
Square, Chester CH1 2HU, England. 
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Except for the Patterson vectors, which must be 
provided on a separate input file (TAPE4)  all input 
is entered interactively where the user is guided by 
the program to respond to self-explanatory prompts. 
Since it is the basic principle of IMPAS to search for 
symmetry-related vectors, it has to be ensured that 
not only an asymmetric set but Patterson vectors of 
the entire cell are supplied. 

At the present stage the symmetry elements 1, 2, 
21, 4, 4, certain types of sixfold axes, and all types 
of mirror and glide planes can be processed. Hence 
the program is applicable to all space groups except 
P1, with the further exception that searches for cer- 
tain types of three- or sixfold axes cannot be done. 

In contrast to many other Patterson search pro- 
grams no input of molecular fragments is required, 
so IMPAS  may be used for structures of totally 
unknown geometry. Even if the space group is 

INPUT PATTERSON 
PEAKS FROM TAPE 

I 

@ 

I'NPOT  O STANTS I 

I NPUT ATOMS 1 
FROM TAPE 22 

i 

"1 

WRITE ATOM PA~RS I 
ON TAPE 

OUTPUT AND I 
PLOT ATOMS 

I 
CALCULATE BOND I 
LENGTHS, ANGLES 

Fig. 4. Flowchart of IMPAS. INTER is the key parameter of the 
interactive input, transferring program control to a special sym- 
metry-element search routine. 

ambiguous, the success or failure of a search for a 
proposed symmetry element may help in establishing 
the presence or absence of the symmetry element in 
question. 

Examples 
A few further examples illustrate the application and 
usefulness of this program. Each of the examples 
given below refers to structures where direct methods 
failed or were successful only after overcoming some 
difficulties. 

1. Structure of  the phosphorus sugar 1,2,3-tri-O- 
acetyl - 4,5 - dideoxy - 4 - C- [ ( R )-phenylphosphinyl]-a- 
L-lyxofuranose ( Luger, Yamamoto & Inokawa, 1982). 
The space group, C2, is known to present difficulties 
for 'direct methods' ,  and a number of attempts with 
M U L T A N  failed. For IMPAS  this structure was 
straightforward. The Harker vector of the phosphorus 
atom is k =  P - P ' =  (u,, O, w,), where P, P'  are the 
P-atom positions relative to the twofold axis. This 
vector was easily located at k = (0.460, 0, 0.430). Then 
a type-(2) search for the twofold axis ( I N T E R =  3) 
was executed. Fig. 5 shows the twofold axis at k/2  
in the Patterson space. Each atom vector pair r = 
(x, y, z) and r ' =  ( -x ,  y, - z )  produces a Patterson vec- 
tor pair 

with 

u = k / 2 + r  

u ' =  k / 2 +  r', 

u = ( u p / 2 + x , y ,  wp/2+z)  

u ' = ( u p / 2 - x , y ,  w p / 2 - z ) .  

u and u' have equal v and their u, w components 
obey the condition u + u ' = k .  IMPAS searches sys- 
tematically among the set of Patterson vectors for 
vector pairs having this relation to a given k. 

If up~2 and wt,/2 are subtracted from a found vector 
pair, a transformation into crystal space is accom- 

x C 
Xp 

P 

z ;  

Fig. 5. Twofold-axis search with given P atom Harker vector for 
the phosphorus sugar structure. 
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plished. Since the y origin can be chosen arbitrarily 
in this space group, no further search is necessary. 
The result shows the structure and its mirror image 
with respect to the xz plane. A discrimination between 
the two images must then be made either graphically 
or by inspection of bond lengths and angles. 

The result for the phosphorus sugar is shown in 
Fig. 6. Among the 88 positions found in the cell eight 
were recognized as ghosts, so that 80, i.e. 20 unique 
positions were left, corresponding to 20 of the 25 
atoms of the molecule. The computation time for this 
run was 2.8 s. 

2. Structure of tetraethylammonium hexakis(di- 
iodocuprate) [(Et4N)6Cu6Ill]I ( Mahdjour-Hassan- 
Abadi, HartI & Fuchs, 1984), hexagonal space group 
P63/m. No solution of the phase problem was 
obtained by direct methods. The structure determina- 
tion was done with IMPAS as follows. First a two- 
dimensional Harker vector search was executed with 
respect to a twofold screw axis. One solution of this 
search was then input as a Harker vector to a search 
giving vector pairs related via the screw axis. Addition 
of a one-dimensional statistical search gave the rela- 
tive position of the inversion center, i.e. the origin in 
the z direction. 

Since the origin in the space group P63/m has to 
be fixed on the 63 axis, the procedure described above 
works correctly only if the previously chosen 21 axis 
coincides with the 63 axis. This cannot be ensured 
because twofold screw axes also exist in this space 

9 , .  

86*  ,,.~J,~/~' 85 -  4 4  

89* 76-,. 
87 88 

70, 

18 
33 

?9* 

71 ̧  
22 
25 

78 * 

Fig. 6. Crystal structure (unit cell projected down y) of 1,2,3-tri- 
O-acetyl-4,5-dideoxy-4- C-[(R)-phenylphosphinyl]- a-L-lyxo- 
furanose as found by IMPAS. Circles designate atom positions 
not found by IMPAS. 

group, at (0.5, 0, z), (0, 0.5, z) and (0.5, 0.5, z), and 
are not identical to a 63 axis. Therefore an additional 
hexagonal search had to be carded out, which allowed 
a check whether the vectors found also satisfied a 
threefold-axis symmetry. When a wrong screw axis 
was input, this search gave no solution, but with a 
valid screw axis 32 vectors were found. This set was 
reduced to 24 vectors by further mirror plane and 
inversion center searches. These corresponded to 
the correct positions of all 24 1 atoms in the unit cell 
(Fig. 7). 

3. Structure of tetraphenylphosphonium acetonitrile 
triiodozincate(II) (Hard, Briidgam & Salhab, 1986), 
P(C6Hs)4ZnI3. CH3CN, space group C2cm. No 
solution was obtained with direct methods. This struc- 
ture was solved by IMPAS utilizing consecutively the 
relatively large number of symmetry elements in this 
space group. 

Inspection of the distribution of Patterson maxima 
allowed a safe assignment of the space group. The 
space group C2cm, rather than Cmc2, was indicated 
by the presence of strong Patterson vectors of the 
type (0, 0, w) but not of the type (u, 0, 0). 

0 = I  

0 =Cu 

(a) 

29* 25* 26 

27 
19 * 24" 28" ~ 

31 * 2113. ~ *  

(b) 

Fig. 7. (a) Unit cell of [(EtaN)6Cu6Ilt]I projected on the ab plane; 
only the Cu and I atoms are shown (refinement results). (b) 
Structure found by IMPAS; all I-atom positions were correctly 
positioned. The asymmetric unit contains four I atoms, of which 
three are on special positions with multiplicities six, four and two. 
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Table 1. Structures solved with IMPAS 

MULTAN 
Structure Space group solution 

The phosphorus sugar C17H21OTP C2 No 
Dioxane C4H40 2 P2t/n Yes 
KlaP2W2oO72.xH20 P2J c No 
P(CrH5)4ZnI3.CH3CN C2cm No 
[N(CH3)4]4Na2ot- HPWt tO39 C2/c No 
The caesium tellurate Cs2Te2Oa(OH)6 P] Yes 
The iodocuprate [CH2(CsHaN)2]2Cu2I 6 P21/c Yes 
Ethylthiobullvalene CI2HIaS I4 Yes 

References 
Luger, Yamamoto & Inokawa (1982) 
Buschmann, Luger & Miiller (1983) 
Fuchs & Palm (1984) 
Hartl, Briidgam & Salhab (1986) 
Fuchs & Palm (1986) 
Puder & Fuchs (1986) 
Hartl & Mahdjour-Hassan-Abadi (1984) 
Luger & Roth (1986) 

From a two-dimensional type-(1) search a suitable 
Harker vector with respect to the twofold axis in the 
a direction was chosen. This Harker vector was then 
input to a 21-axis search. Addition of c-glide (_kb) 
and mirror-plane (_l_c) searches led to the positions 
of the two l, the Zn and the P atoms. No further 
peaks were found by IMPAS; however, in this 
acentric space group the mirror images of the heavy 
atoms also appeared. Bond-length considerations 
easily allowed a choice of a connected set. 

Concluding remarks 

The examples illustrated above and the list of struc- 
tures already solved with the help of IMPAS (Table 
1) demonstrate that a suitable Patterson vector search 
program can be a valuable alternative to direct- 
methods programs. We have had the best experiences 
with this program mainly for higher-symmetrical inor- 
ganic structures. For these structures IMPAS has the 
advantage-  in comparison with some other vector 
search procedures-  that no previous information on 
any molecular geometry is necessary. The present 
drawback may be that it is not applicable to all space 
groups (e.g. P1 is totally excluded) and that the user 
must have some education in basic crystallography, 
especially in crystal symmetry. 

It should be pointed out that IMPAS was not 
introduced as a substitute for direct-methods pro- 
grams. For large organic light-atom structures these 
methods are still the first choice. 

The authors thank Miss E. Miiller for her assistance 
in coding and testing the program. 
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